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Absence of the absolutely continuous spectrum for 
Stark-Bloch operators with strongly singular periodic 
potentials 

Marco Maiolit and Andrea Sacchettit 
Dipmimento di Matematica, Universia di Modem 1-41100 Modena, Italy 

Received 25 October 1994 

Abstract We prove the absence of the absolutely continuous spectrum for the operator 
-$ + rjez aS’(x - j )  + fx, f > 0 and a # 0, by means of the crystal momentum 
representation and the Howland‘s criterion for Flquet-type operators. 

1. Introduction 

The Stark-Bloch problem with singular crystal periodic potential was first studied from 
the qualitative point of view by Berezhkowskii and Ovchinnikov [BO] in the case of a 
delta-type potential. Subsequently, from the numerical viewpoint, strong evidence for the 
existence of bound states was given by Ferrari, Grecchi and Zuoni at least for small strength 
of the electric field [FGZ]. At present the only rigorous result on this class of prDblems is 
due to Delyon, Simon and Souillard as regids a random &type model [DSS], where in 
particular a transition from point spectrum to continuous spectrum is proved as the electric 
field strength increases. On the other hand, the rigorous solution for the Stark problem with 
periodically arranged 6 interactions is still lacking. 

In recent years attention has been paid to the Stark-Bloch problem with even more 
singular crystal potentials. In particular Avron, Exner and Last [AEL] considered the case 
 of^ periodically arranged 6’ interactions (with not necessarily identical swengths) and they 
proved the absence of absolutely continuous spectrum for these models. Their technique 
consists in regarding the resolvents as performed by trace-class perturbations of a pure 
point model: then classical results of functional analysis imply the absence of absolutely 
continuous spectrum. 

The aim of our work is to prove the absence of absolutely continuous spec!” by 
different techniques,. in the case in which the crystal potential given by the 6’ is exactly 
periodic. Although this result is contained in the more general results of [AELI, we still 
think that this procedure is interesting by its relative simplicity and because it can suggest 
different approaches to the more complex problems of localization in the 6’ Stark-Bloch 
model and of spectral analysis of the 6 Stark-Bloch model. 

Our proof essentially consists in regarding the original Stark-Bloch. operator as a 
Floquet-type operator via the crystal momentum representation and in verifying that it 
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satisfies the hypotheses of Howland’s criterion. In general, Floquet operators are formally 
defined as: 
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d K = -i- + H + V(t )  
dt 

where H is a pure point operator defined on a Hilbea space 7-l with the simple eigenvalues 
e A2 < . . ., and V ( t )  is an operator which periodically depends on t .  Let us now recall 

Howland’s criterion for bounded periodic perturbation of Floquet operators [H, theorem I]. 

Theorem 1. 0 and let V be bounded and 
strongly C’ in t for r > 1 + [y-’I.  Then the operator K defined on Lz(O, 2a) 8 ‘H has 
empty absolutely continuous spectrum. 

Let A,+’ -An  > cny for some y z 0 and c 

An important role in our proof is played by the fact that the widths of the gaps of 
the 6’ Bloch model are asymptotically linear with respect to the band index, while the 
widths of the bands are asymptotically constant. With regard to this remark let us stress 
two facts. First, the same asymptotic behaviour for the gaps and for the bands that occurs 
when a periodic smooth potential is superimposed on the 6’ one still holds by a simple 
perturbation argument: therefore the same result, namely the absence of the absolutely 
continuous spectrum is expected (although we do not perform a rigorous proof of that). 
Besides, in the 6 Bloch model the asymptotic behaviour of gaps and bands is the opposite 
one, so that the associated Stark problem should require a more detailed analysis. 

2. The 8’ Bloeh model 

The selfadjoint operator [AGHH] 

H ~ = - A + ~  or6’(x - j )  a # O  
jeZ  

can be defined as the Laplacian on the domain which consists of functions of class 
H*.*(B - Z) with the boundary conditions 

where ‘ denotes the derivative with respect to x .  
For the sake of simplicity we can suppose a = 1 without loss of generality (except in 

the particular case LY = -1, which, however, can be treated analogously). The spectrum of 
this operator consists of bands 

where 



Absence of continuous spectrum for Stark-Bloch operators 1103 

and 
u,+I - 6. = 2nrr2 - s + rr2 + + O(n-') 

as n goes to infinity. 

with period 2rr, are the solutions of the eigenvalue equation 
The band functions &(IC) and the Bloch functions fpn(x, k), k E [-a,,rrl periodic in k 

I-A - En(k)I%(X,k) = 0 %(X.k) E L2(I -$ ,$I ,k )  
with the conditions 

vn(-$, k) = eikpn($, k) 

PA(-$, k) = e c o . ( ~ ,  1 

VL(O-, k) = VL(O+, k) = V;(o,k) 

vn(O+, k) --qn(O-, k) = VXO, k). 

i k r l k  

W e  have that the band functions are the solutions of 

cosk = cos Kn(k) - - Kn(k) sinK-(k) ER(k) = K;(k) (4) 2 
where one easily finds 

~,(k) = nz + O(n-l) as n -+ 03. (3 
Since H, is a selfadjoint operator one has that, for fixed k, the Bloch functions pn are 

orthogonal on [-$, 4J. On the intervals (-$, 0) and (0, 4) the Bloch function pn(x, k)  will 
be a linear combination of the exponentials e*Ku(kjx: 

(6) 
c- eiK.(k)x + c- e-iL(k)x "+ n- 

+ + -%Wx c,-e 
Vn(X ,  k) = 

By imposing the conditions (3) one finds 

-I c x  C O  2 . .  
0 < x  c ;. 

where 
1 - e-i(k+K.(k)) 

= 1 - ei(k-K.(k)) 

and C,(k) is the normalization constanr By some caIcl 
have that 

tions and using equa 

and 
C,(k) = [2+ d,(k)}-"' 

where 
sink + sin K,(k) 

sin K,(k) + $K,(k)cos K,(k) -sink' dnW) = , 

By equation (5) it follows that C,(k) = & + O(n:I) as n -+ 03. 

We have the following results. 

(3) 

tn (43 we 
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Theorem 2.  The Bloch functions qn(x. k) are a ‘complete orthonormal’ set in L2@, dr) 
in the following sense: given (0 E H,”(R - Z) (where H , ’ @  - Z) denotes the space of 
functions of class HZ*’(R-i?;) with compact support in W) and satisfying the conditions (1) 
one has 

M Maioli and A Sacchezti 

where the a.(k)’s (a,@) E En, En being the space of periodic functions Lz([ -x ,  R I ,  dk) 
of period 7.n) are defined by 

This transformation is an isometry and therefore it admits a continuous extension from 
the whole Lz(W) onto @g17-1,. 

Proof. The statement can be proved by an adaptation of [RS, theorem XUI.981, taking 
into account the particular domain of HB. In fact we remark that the operator -A with the 
boundary conditions (3) has compact resolvent for each k and that the band functions E.(k) 
are non-degenerate (at least in the case (z # -1) [AGHH, theorem II1.3.41. The remaining 

U p a t  of the proof coincides with that of the above-cited theorem. 

3. Absence of the absolutely continuous spectrum for the Stark-Bloch operator 

Now let us consider the selfadjoint Stark-Bloch operator 

H f = H B + f x  f > O  
on the domain 

D(Hf)  = [p E Lz : 9’ E AC@-Z), (o satisfies (1) and, besides, -rp”+fxyl E L2(R-Z)] .  

Our aim is to study the spectrum of Hf. Starting from theorem 2 let us consider the 
crystal momentum representation of the operator Iff, when applied to a function y, E D ( H f ) .  
It takes the form (see Blount [B] for a review) 

Hfq --+ if- + E@) + fX(k) a a = (a l , .  . . ,a,, . . .) E e:17i,, (11) [ d “ k  1 
where E(k) = diag(E,(k)) is the diagonal matrix defined by the band functions while 
X(k) = (Xm,,,(k))m,n is the inter-band coupling matrix, such that 

Here u.(x, k )  are the functions, periodic in x with period 1, defined by q(x, k) = 
eik”u,(x, k ) .  

Now let us regard the operator (1 1) the following way: 

where D is the diagonal operator whose elements are the numbers h, = & JTx E,(k) dk 
and where V = f X  + E - D. Let us first state the following lemma. 
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L e m m  3. 

Proof. 
(S), the stationary phase theorem gives 

V is strongly C2 in k. 

First we prove that V is uniformly bounded in k. On the basis of (4), (§), (7) and 

Vn, m (13) 
CI 

X.,m(k) = O([Kn(k) - L(k)I- ' )  6 - n - m  

uniformly in k for some CI z 0. 
Therefore X(k) is uniformly norm bounded in k by the estimate 

Besides, by virtue of ( Z ) ,  the difference 

E n  (k) - A n  6 O n  - a n  6 CZ (14) 

is uniformly bounded for each n by some CZ > 0. Therefore the operator E(k)  - D is 
uniformly bounded because 

IIE - DII = m=IE,(k) -&I 6 CZ 

uniformly in k, and the same holds for V(k). Moreover it turns out that E - D is strongly 
C2 in k. Indeed, we recall that K,(k) is determined by the implicit relation 

3 (k ,  K) = cosk - cos K + $ sinK = 0 

which is obtained from KO = n n  and ko = 0 (if n is even) or ko = n (if n is odd). By the 
implicit function theorem it follows that 

sink - a 3  
ak K'(k) = -- - - i; - $sinK,(k) + $Kn(k)cosKn(k) 

where, from (5) 

,smK,(k)+4K,(k)cosK,(k) 3 .  = $(-l)"nn+O(n-]) 

so that 

Besides, by means of (4) and (5) we have 

K:(k) = - KA(k) 
~ s i n K , ( k ) + ~ K , ( k ) c o s K , ( k )  

5 s i n K . ( k ) + ~ K , ( k ) c o s K , ( k )  

cos k sink[ZcosK,,(k) - +K.(k)sinK.(k)] 
($sin K,(k) + $K,(k) cos Kn(k))2 

cos k sink[cosK,(k) - cosk] 
($sinK.(k) + ~K. (k )~osK, (k ) )~  - KL ( k )  - - 

1 
= 2(-1)"cosk-(1 +O(n-l)). 

nn 
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Therefore 

EL(k) = ~ . ( k ) ~ ; ( k )  =4sink+O(n-’) 

and 

= 2K,(k)K;(k) +2KL(k) = 4cosk(-l)” + O(n-’). 

So there exists C3 > 0 such that 

IEA(k)l < c, IE:(k)l < c3 Vk E [-n,n], vfl. 

Hence it follows that E.@) - A,, i s  bounded, as well as its first and second derivatives, 
uniformly with respect to n. In analogous manner one can remark that the estimate (13) 
still holds for the first and second derivatives of X,.,(k) (eventually changing the constant, 
which is in any case independent of k and of the indices n and m )  in virtue of the stationary 
phase theorem. Indeed it is sufficient to verify that the first and second derivatives of d,(k) 
and w,(k) are uniformly bounded in k and in n: this in turn can be simply verified from 

U (10) and (8) by virtue of (5). Thus the lemma is proved. 

Therefore we have the following theorem. 

Theorem 4. uaac(Hf).= 0 for any f > 0. 

Proof: Since ;\“+I -A,, =~2nn2(1 +O(n-’)), then theorem 1 applies, to conclude that Hf 
has empty absolutely continuous spectrum, because V(k)  is bounded and strongly C2 in k.  
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