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Absence of the absolutely continuous spectrum for
Stark—Bloch operators with strongly smgular periodic
potentials
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Received 25 October 1994

Abstract. We prove the absence of the absolutely continuous spectrum for the operator
_55 + Ejez ad’(x — )+ fx, f > 0 and & 7 0, by means of the crystal momentum
representation and the Howland's criterion for Floquet-type operators.

1. Introduction

The Stark-Bloch problem with singular crystal periodic potential was first studied from
the qualitative point of view by Berezhkowskii and Ovchinnikov [BO] in the case of a
delta-type potential. Subsequently, from the numerical viewpoint, strong evidence for the
existence of bound states was given by Ferrari, Grecchi and Zironi at least for small strength
of the electric field [FGZ]. At present the only rigorous result on this class of problems is
due to Delyon, Simon and Souillard as regards a random &-type model [DSS]. where in
particular a transition from point spectrum to continsous spectrum is proved as the electric
field strength increases. On the other hand, the rigorous solution for the Stark problem with
periodically arranged § interactions is still lacking.

In recent years attention has been paid to the Stark—Bloch problem with even more
singular crystal potentials. In particular Avron, Exner and Last [AEL] considered the case
of periodically arranged &' interactions (with not necessarily identical strengths) and they
proved the absence of absolutely continuons spectrum for these models. Their technique
consists in regarding the resolvents as performed by trace-class perturbations of a pure
point model; then classical results of functional analysis imply the absence of absolutely
continuous spectrum. .

The aim of ovwr work is to prove the absence of absolutely continuous spectrum by
different techniques, in the case in which the crystal potential given by the §’ is exactly
periodic. Although this result is contained in the more general results of [AEL], we still
think that this procedure is interesting by its relative simplicity and because it can suggest
different approaches to the more complex problems of localization in the &' Stark—Bloch
model] and of spectral analysis of the § Stark—Biloch model. )

Qur proof essentially consists in regarding the original Stark—Bloch operator as a
Floguet-type operator via the crystal momentum representation and in verifying that it
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satisfies the hypotheses of Howland’s criterion. In general, Floquet operators are formally
defined as:

4

K =—i
&

+H+ V(@)

where H is a pure point operator defined on a Hilbert space M with the simple eigenvalues
A < Ap < ---, and V{t) is an operator which periodically depends on ¢. Let us now recall
Howland’s criterion for bounded periodic perturbation of Floquet operators [H, theorem 1].

Theorem 1. Let Ay 1 — Ap 2 cn? for some ¥ > 0 and ¢ > 0 and let V be bounded and
strongly C” in ¢ for r > 1+ [y~']. Then the operator K defined on L?(0, 27) ® H has
empty absolutely continuous spectrum.

An important role in our proof is played by the fact that the widths of the gaps of
the &’ Bloch model are asymptotically linear with respect to the band index, while the
widths of the bands are asymptotically constant. With regard to this remark let us stress
two facts. First, the same asymptotic behaviour for the gaps and for the bands that occurs
when a periodic smooth potential is superimposed on the §" one still holds by a simple
perturbation argument: therefore the same result, namely the absence of the absolutely
continuous spectrum is expected (although we do not perform a rigorous proof of that).
Besides, in the § Bloch model the asymptotic behaviour of gaps and bands is the opposite
one, so that the associated Stark problem should require a more detailed analysis.

2. The & Bloch model
The selfadjoint operator [AGHH]

Hp=-A+) afx—j) a#0
jeZ

can be defined as the Laplacian on the domain which consists of functions of class
H**(R — 7Z) with the boundary conditions

) = ) =
[co(J ) =@ () = ¢'() ez W

e(j+) —e(j=) = a¢'(j)
where ’ denotes the derivative with respect to x.
For the sake of simplicity we can suppose o = 1 without loss of generality (except in

the particular case & = —1, which, however, can be treated analogously). The spectrum of
this operator consists of bands

o(Hp) = |_Jlen, Br)
a=1

where

Bo—ar=8-%+0(n% (2}
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and
Uyt — By =207 =8+ 22+ 2+ O™

as n goes to infinity.
The band functions E, (k) and the Bloch functions ¢,{x, k), & € [—m, 7] periodic in &
with period 27w, are the solutions of the eigenvalue equation

[~A = E,(®]pn(x. k) =0 @n(x.k) & LA{—3, 3], dx)
with the conditions
on(—1,8) = e¥a (3. 0)

@ (—1, k) = (3. k)

3
@ (0—, k) = 940+, k) = (0, k)
@n(0+, k) — @r(0—, k) = ¢, (0, k).
We have that the band functions are the solutions of
K. (&) .
cosk=cos Kal®) — 2D sn K,y B =KD @

where one easily finds
Kn(k) =nx +0(n™" as 71 - 0. , (5)
Since Hjp is a selfadjoint operator one has that, for fixed k, the Bloch functions ¢, are

orthogonal on [—-.41;, %]. On the intervals (—%,— 0) and (0, %) the Bloch function ¢, (x, &) will

be a linear combination of the exponentials e®5®)x;
or, e Fa® 4 o= rilbx ~L<x<0 .
onl ) =1 . ko —iK, (k) 1 ©)
el et L g g7l 0<x<s.
By imposing the conditions (3) one finds
eiKnllx _ O Knyy (1)K 0x “Ll<x<0
pn(x, kY =Ca(k) § i ) )
Enl)3 iKY _ yy (1o TR 0<x<i

where
| — e MKl )
Wk} = T exm)
and C, (k) is the normalization constant. By some calculations and using equation (4) we
have that

N sink
Ron Ol =1 G e 0 + LK, 6 005 Kol) — sink” ®
and - .
Cuk)=1{2+ d, (k) - - (9)
where
a0 = sink + % sin K, (k) (10)

sin K, (k) + LK, (k) cos K, (k) —sink

By equation (5} it follows that C,(k) = :1,5 + O(nf_’) as n —> oC.
We have the following results.
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Theorem 2. The Bloch functions qa,,(x k) are a complctc orthonormal’ set in L2(R, dx)
in the following sense: given ¢ € HD 2R — Z) (where Hu GR Z) denotes the space of
functions of class H%*(R — Z) with compact support in R) and satisfying the conditions (1)
one has

o0 1 n
=S —= | g k) &
o(r) ;ﬁ;f_ﬂa()co(x )

where the a,(k)’s (a.(k) € Hy, Hx being the space of periodic functions L2({—m, 7], dk)
of period 27) are defined by

ap(k) = 0 (x)Pn(x, k) dx.

\/_

This transformation is an isomeiry and therefore it admits a continuous extension from
the whole L2(R) onto &2 H,.

Proaf. The statement can be proved by an adaptation of {RS, theorem XII1.98], taking
into account the particular domain of Hg. In fact we remark that the operator -—~A with the
boundary conditions (3) has compact resolvent for each k and that the band functions E, (k)
are non-degenerate (at least in the case @ % —1) [AGHH, thecrem IN.3.4]. The remaining
part of the proof coincides with that of the above-cited theorem. O

3. Absence of the absolutely continuous spectrum for the Stark-Bloch operator

Now let us consider the selfadjoint Stark-Bloch operator
Hy=Hp+ fx f=0
on the domain
D(Hf)={p e L%: @' € AC(R—-Z), @ satisfies (1) and, besides, —¢"+fxp LY2(R-Z)}.

Our aim is to study the spectrum of Hy. Starting from theorem 2 let us consider the
crystal momentum representation of the operator Hy, when applied to a function ¢ € D(Hf).
It takes the form (see Blount [B] for a review)

Hyp —> [if(;ik+E(k)+fX(k):|a a=(a,...,a,...) € B H, (1D

where E(k) = diag(E,{(k)} is the diagonal matrix defined by the band functions while
X(kY = (X n (k) m.n 1s the inter-band coupling matrix, such that

Bum (x k)

Knin®) =1 f iar, 2 gy | (12

Here u,(x, k) are the functions, periodic in x with period 1, defined by ¢(x,k) =
ey, (x, k).
Now let us regard the operator (11} the following way:

d
if—+D+ Vi
lfdk+ + V(&)

where D is the diagonal operator whose elements are the numbers A, = 5= [T E,(k) dk
and where V = FX + E — D. Let us first state the following lemma.
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Lemma 3. V is strongly C? in k.

Progf. First we prove that V is uniformly bounded in k. On the basis of (4), (5}, (7) and
(8), the stationary phase theorem gives

Xmm=mmm—mmﬂ<£% Vi, m (13)

uniformly in k for some C} > 0.
Therefore X (k) is uniformly norm bounded in k& by the estimate

1
!IX(]C) ”2 = maxz |Xn m(k)lz 2'Cl2 Z m < ©0.

nz=]

Besides, by virtue of (2), the difference
Ek)—d K Br—on S 2 (14)

is uniformly bounded for each n by some C; > 0. Therefore the operator E(X) — D is
uniformly bounded because :

IE ~ DIl = max |B,(k) — Xl < s

uniformly in &, and the same holds for V{%). Moreover it turns out that E — D is strongly
C? in k. Indeed, we recall that K, (k) is determined by the implicit relation

F(k, K) =cosk —cosK + £ sink =0

which is obtained from Ky = nw and ko = 0 (if » 1s even) or kg = & (if n is odd). By the
implicit function theorem it follows that

K (k) = 8.7-' _ sink )
%? Z5in Ky (k) + LK, (k) 05 Kn(k)

where, from (35)
2 sin K, (k) + 1 Kn(k) cos K, (k) = 3(—1)"'nw + O(n™")

so that

2sink

K, (k) = ——(1+0@™).

Besides, by means of (4) and (5) we have

K7 = cosk _x® sin k[2 cos K, (k) — 1 K, (%) sin K, (k)]
g 3sin K, (k) + 1K (Kycos Kp(k) " (3 sin K (k) + 5 Kn(k) cos K, (k))?
_ cosk —K® sin k[cos K, (k) — cos k]
2sin K, (k) + sKa(k)cos Kuk) " (3 sin Ky(k) + 1K, (k) cos K (k)

=2(—1)" coski(l +0(m™).
nmw
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Therefore
EL(k) = 2K, (R) K, (k) = 4sink + O(n™")
and
E'(R) = 2K, (B)K7 (k) + 2K, (k) = 4cos k(—1)" + O ™).
So there exists Cy > 0 such that
|EL ()] < Cs |EX()| € Cs Vk € [-7, 7], Vn.

Hence it follows that E,(k) — A, is bounded, as well as its first and second derivatives,
uniformly with respect to ». In analogous manner one can remark that the estimate (13)
still holds for the first and second derivatives of X, (k) (eventually changing the constant,
which is in any case independent of k and of the indices n and m) in virtue of the stationary
phase theorem. Indeed it is sufficient to verify that the first and second derivatives of d, (k)
and w, (k) are uniformly bounded in & and in a: this in turn can be simply verified from
{10) and (8) by virtue of (5). Thus the lemma is proved. O

Therefore we have the following theorem.
Theorem 4. ou(Hp) =@ forany f > 0.

Proof. Since Ay — A, = 2nm2(1 +0O(n™")), then theorem 1 applies, to conclude that Hy
has empty absolutely continuous spectrum, because V(k) is bounded and strongly C? in £.
a
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